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GENERALIZED DYNAMIC PROBLEM OF THERMOELASTICITY FOR A
HALF- SPACE HEATED BY LASER RADIATION*

M,S. BOIKO

A generalized dynamic problem of thermoelasticity is solved for a half-
space heated by laser radiation. Expressions for the displacements in
the Rayleigh wave are obtained. The asymptotic form of the solution at
a point at infinity is studied. It is shown that the magnitude of the
displacements at the wave fronts depends essentially onthe value of the
rate of propagation of heat.

1. Formulation of the problem. Let a beam of radiant energy fall, at the instant
T=0, on acircular region of a plane boundary of an elastic half-space. The position of
every point of it is determined by the coordinates p,z 6, of a cylindrical coordinate system.
The radiation intensity volume density of the beam is

o ge O<So<K R, o
Qt'(f)‘ T):Qx (3") H (‘) 51 ({“3}2 {n‘ p> RG (1.1}
(H (1) is Heaviside's function). We reguire to find the elastic stresses and displacements
in the half-space when the radiant energy is absorbed., The variationin the temperature field

caused by the deformation is ignorded.
The solution of this problem can be reduced to solving the following set of Egs. /1/:

i - AT ,' - AT ".‘ - N B g - Ay
A=l =m (DT =0, A =0 (1.2
K o1 ! % ot A a T,

B 3. =~ 2
Tl trerr T H

Here ¢. ¥ are the displacement potentials, t is temperature, ¢;. ¢ are the velocities
of the longitudinal and transverse wave, I, is the thermal flux relaxation time, a is the
thermal conductivity, 7. u are the Lamé coefficients, is the coefficient of thermal

expansion, and A is the Laplace operator,
The solutions of the system must satisfy the following boundary and initial conditions:

o= O =0, — At = lg, (1.3)
a1 ax at

(0;; is the thermoelastic stress tensor, 7 is the absorption capacity and Ay is the
thermal conductivity.

2. Construction of the solution. we shall construct the selution of the problem
using the contour-integral method /2/. Let us write the sclution sought in the form of the
Fourier-Bessel transform
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o= .40(A ko (kp)dk, Y= \J,(k,z)k.h(kp)dk, (2.1)
cné a-,-u:
t={ Aok o) klo (ko) b, (k3) = e \ A;(p k. z)ertdp,
‘ o—wr.

j=0‘1‘,2

The unknown functions A; are found by substituting relations (2.1) into (1.2)-(1.4) and
solving the resulting ordinary differential equations in the same manner as in /2/. Let us
write the final expressions for 4;

Ag=Taebt + Toe™%, Ay = Tyebs, Az—%e"” (2.2)
Ty=T2 [(k + B2t — 4kad].  To= o 41 (p) J: (kR0)

Ta—;’—"u — B (B — d) k. Tum 4k — (A% — B2

au=%- a=2 1 pi=k - =12

{eq is the rate of heat propagation). The branches of the radicals in (2.2) are fixed by
the condition that argf, = arg P, = axgd = 0 when p > (.
We write the expressions for the compcnents of elastic displacements in the form

x G- ix

U, = )—L- \ { \ [kTqe?s — kT 7% — BT gef] et dP}E‘ . (2.3
- 6 o-ix
l‘Jl (}\ HU) J] (]\(’) d
C_x. O»)]:: )
wom g |\ [RTemf — Tapyemte — dToc® ) rvdp) ks (k) Ju(he) di
6 o-ix :

Analysing expressions (2.2) we find that A4; (p. k. 2) are analytic functions of the complex
variable p in the region (G: Rep > —a,a;”') when ¢, > ¢, , and in the region (G: Rep > 0) when
Cg K €y Analytic continuation A4; (p. k, ) to the left half-plane is a multivalued function
with branch points

. . ol b s 2
Pra=—ikcy pgy=—ikey. po.= __2_?;_ :I/Z—g——l‘ ‘q
andéd simple poles
Pse = ik pr = —a,. py =10

We shall consider, on the upper sheet of the multisheeted Riermann surface the branch of
the multivalued function Aj; (p. k. z) which represents the analytic continuation of this functior,
first defined in the regior G Every sheet of the Riemannian surface represents a plane p
with cuts carried out as showr in Fig.l

Following /3/, we shall represent the whole field of displacements in the form

U=0=Ur= U,

where U, describes the static part of the probler and is determined by the contribution of
the pole p,, = 0, Up describes the Rayleigh wave and is determineé by the contribution of the
poles p,s = —tikcr, representing the solution of the equation T, =0, U, describes the volume
waves and is obtained by integrating along the contour 7 shown in Fig.l. We eliminate U,
from further consideration, since we concern curselves here only with the dynamic part of the
problem.

3. Determination of the displacement field in the Rayleigh wave. If the
deformation of the initial contour of integration into the contour 4 is accompanied by
intersection of the poles P, then the contribution of these poles determining the Rayleigh
wave must be taken intc account. Determining the residues at these poles we obtain

Upn = 2232 Re[?{’j_jl.__—’“" Jem = (= m) (< — S en (1) s R").h( = )dz} (3.1)

cg3cn L id, ( [Ed
0
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U= g e [ (2 — 2o -

o) ()]

4
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dy=Vzlias =~ a7}, g3=—r —14, gg==-t
V x(ias 2 2= . as ”
£,2 e g2
& R Ny
i ? v oMpE=—— —r, k=1,2
o* ‘R
N2 — ¢ oz
¢ -y - 1, =X
MM ™ I3
Let us consider a special case of a point source
obtained from {(3.1) by the following passage to the
Imp limit:
S A )
\ $ lim Ug;; = UpR. lim Uge= LzR
Re~0 R0

where we have (W is the power of the optical radiation

\ J Ao
3
© £ ek source)
T8 e
7 1110
\ Ry q
Since it is not possible to derive an expression

for the displacement components in closed form, we shall
attempt to obtain the approximate expressions for [°

\
N\

A and Ut Let us consider the integral

L i

Fig 1. ‘D(?»z)=S temtt Iy (hat) (1) dt (3.2)
o

Lemma. Let
F e o= (10 o]} Res

Then the following asymptotic expansicn, as |j, |~» »x , holds
. f & f.; vy 1 w F Z—n—N g A2 2 gt e )
, -— | m——— '3 var = — Yy == - 3.
D (ko) == Ff 3 jI PP E(x; 3 Mz_:_w), 1 = (3.3)
iF (a. b r. 2 {e +he uyneraecmetryie~ functieor arnd T (=) ig he gamma function)
{F (a, b, ¢, 2) 1s the hypergeometric functicrn and T {2) is the gamma function).
Proof. We take =1, such that t, < 1. Then
o = o
1 ; H o . N O L rev ~ReE (ol .
E\ t\'~7.e—',,,ljl (}"!} gt <\ [1\-‘7,(»/ "&t <\ PhmveTRE Uk gy — F; (/.;)
L by i
When Rei, > { , the last integral has the fcollowing estimate by virtue of Lemma 1.1 of
/4/:
Fy (hp) < r exp [RBe {2043}
Let us consider the integral
1o
>, /.2)—(1" Shly (gt dt
0
Let us write @, (i, in the form of a difference of integrals along the semiaxes {0 oc)
and 4. o). Then the first integral can be found from the tables of integration /5/, and

for the second integral the estimate obtained above holds. Expanding the function f(y on
the segment {U. t) in a uniformly converging Maclaurin's series and integrating the resulting
expression term by term, we arrive at formula {3.3).

Using the subst:.tutlcn t = a,"'r , we reduce the integrals appearing in (3.1) to the
form (3.2), and Ay = apH;. k=1, 2. It should be noted that for most materials the guantity

a. = ¢.%a,"! ig of the arder of 10 and Re by ~ 10fz, and this enables usg to uge the asymptotic
aq = &,°a, the order of 11U, and ! 10°z. and this enables
an accuracy, sufficient in practice for any, even very small values of

expansion (3.3) with
Restrlctlng ourselves to the principal term of the expansion, we shall write the following
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1V Erl + P — By R
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O R P ]'r(l"k"a)z +pt
Po=qr | e+ 1) ((meen) + 020

75 3 p . - by
F(T.T,ZW), k=12, by= b

4, Asymptotic form of U, as R—x R=Vp + 2%
Imk We fix the branches of the radicals in {2.2) by means of the con-
dition Re(B;, B, d) > 0. This enables us to change the order of
integration in (2.3), provided that the path of integration in the
complex variable plane p coincides with the path A (Fig.l),
passing along the imaginary axis. Considering the integrals in
question in the plane of the complex variable k, we shallwrite

the solution in another formwhichwill take, e.g. for the first
termof (2.1), the form

ime
o= \ [ 5 Aol ks z) kHo (kp) dk] v dp
-l

_The path of integration L in the plane of the complex

variable ¥ is shown in Fig.2. The sinqularities indicatedinFig.2
are Y 1 P
k:,z—-ilcl ’ ksm—i‘c2

. 2 .
Fig.2 R T

To illustrate the geometrical constructions, all singularities of the integrands are
removed from the real axis.

Deforming the initial path L into the path A,, coinciding with the path of steepest
descent, we cbtain the asymptotic¢ form of the solution using the method of steepest descent

ioc
2 b . T .
U;=$—- \ 1ap~tytsin? 81 T —9%sin? 8 - (4.1)
2R Y |
—igx
(1 — 2y2sin? 8)? tg 6, (p) . ot
I/P{ao—r(am’-cosiﬁ)p} T Jilfuip)erdp
ix
o bed L ocos 20 V 1% — sin?y 2
U= - cos? 8 (4.2)
! S V Pleay® + (2s + cos?8) p]
@1 (p) Iy (vop) e¥ndp
where
v 2] U U
y el [ L - o
Ui=mes=ms’ U= cos@  sin6 ' 8= arctg

Ty=(1 — 2y*sin29)? - 4y°sin® 0 cos 8 ) T — y7sin® 8

Ty =cos*20 - 4sin®Bcoe ] y° — sin* @
_Ce __ Rysind o i A ®
ag__—c;z—, y_?_‘---c-;——, =T— o Je=14.2

and Uy, Uy, U, U, are the corresponding terms of the displacement field in (2.3}, describing
the fields of the longitudinal and transverse waves.

Let us now denote by U; the part of the displacement field in (2.3) which describes

the elastic wave propagating with a velocity equal to the velocity of heat propagation g+
The asymptotic expression for U, as R — o will be

e
. 2 Jy (fdoRosin @) 45, . p
U == b:cs? ( 1( opzo ) o-d,R »gy (p)dp, dy? = : + CP
¥ q

|

-

In the case of a point source we have

U= %%{[th;’v? sinBsin 201 — y¥sin?8 x
(H (11) — exp < — -g-'—:—'r,)) + (1 — 292 sin%0)* x
cos 6 IR P SR 1

ey a; — cos? 8 O (1) o %P ( a Tl))J

v byta [sm 46

_ VT —sin?8 .
= m A H (12) m sin 200, (Tg)]
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bye
Ul = ’a’o [exp(uT13)L®a(T.7:)], G<a
. b . R
U= R‘:; {exp{mg-n)-—(bg(r,—w)» g >0
where
58 ~xTy g
Dy g == A - z)dx
§ ‘/‘z(ab.s’_ ) i )

R { exp(—doK —
O, (T,-—-—):—-r-. P ) 1) .
c '\ Vit oD §1(—z)dx

2y a91?

gy wm =
ST oot I8 T IIIeES
e R R
Q’-ﬁ‘":—{-—-, Tp== T — — Ty == T oo
q ‘q

A study of the propagation of the Qiscontinuities in the elastic displacement field is
of interest. The discontinuities in the displacement field are caused by unequal convergence
of the integrals (4.1)—(4.2j at the limit at infinity. Let us denote by W, and W, the
magnitudes of the jumps at the longitudinal and trasnverse wave fronts corresponding to the
discontinuities in question. From (4.1). {4.2; we obtain

. by {gy — 1)y N i e, {1 — 2n0sin? 32

W, = =gy | 4860020 11 — 75070 — e o
H 2?ia1aﬁR [ : 1 i Vo, — costB co- 8
. Eylay — 1oy SN <sHpre

W, = o7 R cos8~] m}sm 28

Similarly, the discontinuities in the displacements field ¢, are described by the
expression

. by ey — 1) ¢ e 0
U0 e wdtd 0 exp | e u R
4 dayaeR r ( a /J

Figure 3 shows the results of numerical computation of the normalized direction functions
Fyib, = W; Llmax

for varicus values of the guantity y,=%a, —1. The cuirves

14 correspend to the values o, = 0.5 0,0t & 4
Thus the directicn functions F, (6: dJdepends sub-

stantially on the numerical value cf the rate of heat
propagation ¢, The proklem concerning the quantity
‘g can be solved after determining the direction

functicn experimentally.
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